Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. There are a wealth of tools for fitting linear models at each location in the brain in neuroimaging analysis, and a wealth of genetic tools for estimating heritability for a small number of phenotypes. But there remains a need for computationally efficient neuroimaging genetic tools that can conduct analyses at the brain-wide scale. Here we present a simple method for heritability estimation on twins that replaces a variance component model-which requires iterative optimisation-with a (noniterative) linear regression model, by transforming data to squared twin-pair differences. We demonstrate that the method has comparable bias, mean squared error, false positive risk, and power to best practice maximum-likelihood-based methods, while requiring a small fraction of the computation time. Combined with permutation, we call this approach “Accelerated Permutation Inference for the ACE Model (APACE)” where ACE refers to the additive genetic (A) effects, and common (C), and unique (E) environmental influences on the trait. We show how the use of spatial statistics like cluster size can dramatically improve power, and illustrate the method on a heritability analysis of an fMRI working memory dataset.

Original publication

DOI

10.1002/hbm.24611

Type

Journal article

Journal

Human Brain Mapping

Publication Date

01/01/2019