Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE OF REVIEW:The HIV epidemic in sub-Saharan Africa is far from being under control and the ambitious UNAIDS targets are unlikely to be met by 2020 as declines in per-capita incidence being largely offset by demographic trends. There is an increasing number of proven and specific HIV prevention tools, but little consensus on how best to deploy them. RECENT FINDINGS:Traditionally, phylogenetics has been used in HIV research to reconstruct the history of the epidemic and date zoonotic infections, whereas more recent publications focus on HIV diversity and drug resistance. However, it is also the most powerful method of source attribution available for the study of HIV transmission. The PANGEA (Phylogenetics And Networks for Generalized Epidemics in Africa) consortium has generated over 18 000 NGS HIV sequences from five countries in sub-Saharan Africa. Using phylogenetic methods, we will identify characteristics of individuals or groups, which are most likely to be at risk of infection or at risk of infecting others. SUMMARY:Combining phylogenetics, phylodynamics and epidemiology will allow PANGEA to highlight where prevention efforts should be focussed to reduce the HIV epidemic most effectively. To maximise the public health benefit of the data, PANGEA offers accreditation to external researchers, allowing them to access the data and join the consortium. We also welcome submissions of other HIV sequences from sub-Saharan Africa to the database.

Original publication




Journal article


Current opinion in HIV and AIDS

Publication Date





173 - 180


Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.


PANGEA consortium