Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We use a reproducing kernel Hilbert space representation to derive the smoothing spline solution when the smoothness penalty is a function λ(t) of the design space t, thereby allowing the model to adapt to various degrees of smoothness in the structure of the data. We propose a convenient form for the smoothness penalty function and discuss computational algorithms for automatic curve fitting using a generalised crossvalidation measure. © 2006 Biometrika Trust.

Original publication

DOI

10.1093/biomet/93.1.113

Type

Journal article

Journal

Biometrika

Publication Date

01/03/2006

Volume

93

Pages

113 - 125