Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We present an extension of population-based Markov chain Monte Carlo to the transdimensional case. A major challenge is that of simulating from high- and transdimensional target measures. In such cases, Markov chain Monte Carlo methods may not adequately traverse the support of the target; the simulation results will be unreliable. We develop population methods to deal with such problems, and give a result proving the uniform ergodicity of these population algorithms, under mild assumptions. This result is used to demonstrate the superiority, in terms of convergence rate, of a population transition kernel over a reversible jump sampler for a Bayesian variable selection problem. We also give an example of a population algorithm for a Bayesian multivariate mixture model with an unknown number of components. This is applied to gene expression data of 1000 data points in six dimensions and it is demonstrated that our algorithm outperforms some competing Markov chain samplers. In this example, we show how to combine the methods of parallel chains (Geyer, 1991), tempering (Geyer & Thompson, 1995), snooker algorithms (Gilks et al., 1994), constrained sampling and delayed rejection (Green & Mira, 2001). © 2007 Biometrika Trust.

Original publication




Journal article



Publication Date





787 - 807