Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Classical models of gene flow fail in three ways: they cannot explain large-scale patterns; they predict much more genetic diversity than is observed; and they assume that loosely linked genetic loci evolve independently. We propose a new model that deals with these problems. Extinction events kill some fraction of individuals in a region. These are replaced by offspring from a small number of parents, drawn from the preexisting population. This model of evolution forwards in time corresponds to a backwards model, in which ancestral lineages jump to a new location if they are hit by an event, and may coalesce with other lineages that are hit by the same event. We derive an expression for the identity in allelic state, and show that, over scales much larger than the largest event, this converges to the classical value derived by Wright and Malécot. However, rare events that cover large areas cause low genetic diversity, large-scale patterns, and correlations in ancestry between unlinked loci.

Original publication




Journal article


Evolution; international journal of organic evolution

Publication Date





2701 - 2715


Institute of Evolutionary Biology, University of Edinburgh, King's Buildings, West Mains Road, United Kingdom.


Population Dynamics, Phylogeny, Geography, Models, Genetic, Gene Flow, Extinction, Biological, Genetic Variation