Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We present a stochastic model of the within-host population dynamics of lymphatic filariasis, and use a simulated goodness-of-fit (GOF) method to estimate immunological parameters and their confidence intervals from experimental data. A variety of deterministic moment closure approximations to the stochastic system are explored and compared with simulation results. For the maximum GOF parameter estimates, none of the methods of closure accurately reproduce the behaviour of the stochastic model. However, direct analysis of the stochastic model demonstrates that the high levels of variation observed in the data can be reproduced without requiring parameters to vary between hosts. This indicates that the observed aggregation of parasite load may be dynamically generated by random variation in the development of an effective immune response against parasite larvae.

Original publication




Journal article


Journal of theoretical biology

Publication Date





419 - 430


Department of Infectious Disease Epidemiology, Imperial College London, St. Mary's Campus, Norfolk Place, W2 1PG London, UK.


Animals, Brugia pahangi, Elephantiasis, Filarial, Stochastic Processes, Population Dynamics, Larva, Models, Immunological, Computer Simulation, Host-Parasite Interactions