Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

© 2018 The Authors Journal of the Royal Statistical Society: Series C (Applied Statistics) Published by John Wiley & Sons Ltd on behalf of the Royal Statistical Society. Working memory (WM) was one of the first cognitive processes studied with functional magnetic resonance imaging. With now over 20 years of studies on WM, each study with tiny sample sizes, there is a need for meta-analysis to identify the brain regions that are consistently activated by WM tasks, and to understand the interstudy variation in those activations. However, current methods in the field cannot fully account for the spatial nature of neuroimaging meta-analysis data or the heterogeneity observed among WM studies. In this work, we propose a fully Bayesian random-effects metaregression model based on log-Gaussian Cox processes, which can be used for meta-analysis of neuroimaging studies. An efficient Markov chain Monte Carlo scheme for posterior simulations is presented which makes use of some recent advances in parallel computing using graphics processing units. Application of the proposed model to a real data set provides valuable insights regarding the function of the WM.

Original publication

DOI

10.1111/rssc.12295

Type

Journal article

Journal

Journal of the Royal Statistical Society. Series C: Applied Statistics

Publication Date

01/01/2019

Volume

68

Pages

217 - 234