Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Estimation of respiratory rate (RR) from photoplethysmography (PPG) signals has important applications in the healthcare sector, from assisting doctors onwards to monitoring patients in their own homes. The problem is still very challenging, particularly during the motion for large segments of data, where results from different methods often do not agree. The authors aim to propose a new technique which performs motion reduction from PPG signals with the help of simultaneous acceleration signals where the PPG and accelerometer sensors need to be embedded in the same sensor unit. This method also reconstructs motion corrupted PPG signals in the Hilbert domain. An auto-regressive (AR) based technique has been used to estimate the RR from reconstructed PPGs. The proposed method has provided promising results for the estimation of RRs and their variations from PPG signals corrupted with motion artefact. The proposed platform is able to contribute to continuous in-hospital and home-based monitoring of patients using PPG signals under various conditions such as rest and motion states.

Original publication

DOI

10.1049/htl.2018.5019

Type

Journal article

Journal

Healthcare technology letters

Publication Date

21/02/2019

Volume

6

Pages

19 - 26

Addresses

Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.