Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE:Recent studies have demonstrated an association between a 192 bp polymorphism of the IGF-I gene and total IGF-I serum levels, birth weight, body height and the risk of developing diabetes and cardiovascular diseases later on in life. This IGF-I gene polymorphism in the promoter region of the IGF-I gene may directly influence the expression of IGF-I. In the present study we evaluated the role of this polymorphism in the age-related decline in serum IGF-I levels. SUBJECTS AND METHODS:All subjects were participants of the Rotterdam Study, a population-based cohort study of diseases in the elderly. We studied a total group of 346 subjects, who comprised two subgroups: a randomly selected population-based sample of 196 subjects, and a group of 150 subjects selected on IGF-I genotype. In the total group of 346 individuals the relationship between this 192 bp polymorphism and the age-related decline in circulating total IGF-I levels was studied. RESULTS:Homozygous carriers of the 192 bp allele demonstrated significant decline in serum IGF-I with age (r=-0.29, P=0.002). This decline is similar to that seen in the general population. An age-related decline in serum total IGF-I was not observed in heterozygotes (r=-0.06, P=0.48) and non-carriers (r = -0.12, P=0.32). Interestingly, the relationship between age and serum IGF-binding protein-3 levels showed the same pattern. CONCLUSION:We observed only in homozygous carriers of the 192 bp alleles of the IGF-I gene an age-related decline in circulating total IGF-I levels, but not in heterozygotes and non-carriers of the 192 bp allele. We hypothesize that this IGF-I gene polymorphism directly or indirectly influences GH-mediated regulation of IGF-I secretion.

Original publication




Journal article


European journal of endocrinology

Publication Date





171 - 175


Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.


Humans, Insulin-Like Growth Factor I, Insulin-Like Growth Factor Binding Protein 3, Aging, Heterozygote, Homozygote, Polymorphism, Genetic, Alleles, Reference Values, Aged, Middle Aged