Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mounting evidence over the last few years suggest that published neuroscience research suffer from low power, and especially for published fMRI experiments. Not only does low power decrease the chance of detecting a true effect, it also reduces the chance that a statistically significant result indicates a true effect (Ioannidis, 2005). Put another way, findings with the least power will be the least reproducible, and thus a (prospective) power analysis is a critical component of any paper. In this work we present a simple way to characterize the spatial signal in a fMRI study with just two parameters, and a direct way to estimate these two parameters based on an existing study. Specifically, using just (1) the proportion of the brain activated and (2) the average effect size in activated brain regions, we can produce closed form power calculations for given sample size, brain volume and smoothness. This procedure allows one to minimize the cost of an fMRI experiment, while preserving a predefined statistical power. The method is evaluated and illustrated using simulations and real neuroimaging data from the Human Connectome Project. The procedures presented in this paper are made publicly available in an online web-based toolbox available at

Original publication




Journal article

Publication Date