Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We describe the use of non-parametric permutation tests to detect activation in cortically-constrained maps of current density computed from MEG data. The methods are applicable to any inverse imaging method that maps event-related MEG to a reregistered cortical surface. To determine an appropriate threshold to apply to statistics computed from these maps, it is important to control for the multiple testing problem associated with testing 10's of thousands of hypotheses (one per surface element). By randomly permuting pre- and post-stimulus data from the collection of individual epochs in an event related study, we develop thresholds that control the familywise (type 1) error rate. These thresholds are based on the distribution of the maximum intensity, which implicitly accounts for spatial and temporal correlation in the cortical maps. We demonstrate the method in application to simulated data and experimental data from a somatosensory evoked response study. © Springer-Verlag Berlin Heidelberg 2003.

Type

Conference paper

Publication Date

01/12/2003

Volume

2732

Pages

512 - 523