Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The role of serotonin in CNS function and in many neuropsychiatric diseases (e.g., schizophrenia, affective disorders, degenerative dementias) support the development of a reliable measure of serotonin receptor binding in vivo in human subjects. To this end, the regional distribution and intrasubject test-retest variability of the binding of [18F]altanserin were measured as important steps in the further development of [18F]altanserin as a radiotracer for positron emission tomography (PET) studies of the serotonin 5-HT2A receptor. Two high specific activity [18F]altanserin PET studies were performed in normal control subjects (n = 8) on two separate days (2-16 days apart). Regional specific binding was assessed by distribution volume (DV), estimates that were derived using a conventional four compartment (4C) model, and the Logan graphical analysis method. For both analysis methods, levels of [18F]altanserin binding were highest in cortical areas, lower in the striatum and thalamus, and lowest in the cerebellum. Similar average differences of 13% or less were observed for the 4C model DV determined in regions with high receptor concentrations with greater variability in regions with low concentrations (16-20%). For all regions, the absolute value of the test-retest differences in the Logan DV values averaged 12% or less. The test-retest differences in the DV ratios (regional DV values normalized to the cerebellar DV) determined by both data analysis methods averaged less than 10%. The regional [18F]altanserin DV values using both of these methods were significantly correlated with literature-based values of the regional concentrations of 5-HT2A receptors determined by postmortem autoradiographic studies (r2 = 0.95, P < 0.001 for the 4C model and r2 = 0.96, P < 0.001 for the Logan method). Brain uptake studies in rats demonstrated that two different radiolabeled metabolites of [18F]altanserin (present at levels of 3-25% of the total radioactivity in human plasma 10-120 min postinjection) were able to penetrate the blood-brain barrier. However, neither of these radiolabeled metabolites bound specifically to the 5-HT2A receptor and did not interfere with the interpretation of regional [18F]altanserin-specific binding parameters obtained using either a conventional 4C model or the Logan graphical analysis method. In summary, these results demonstrate that the test-retest variability of [18F]altanserin-specific binding is comparable to that of other PET radiotracers and that the regional specific binding of [18F]altanserin in human brain was correlated with the known regional distribution of 5-HT2A receptors. These findings support the usefulness of [18F]altanserin as a radioligand for PET studies of 5-HT2A receptors.

Original publication




Journal article


Synapse (New York, N.Y.)

Publication Date





380 - 392


Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pennsylvania 15213, USA.


Brain, Animals, Humans, Rats, Fluorine Radioisotopes, Ketanserin, Receptors, Serotonin, Tomography, Emission-Computed, Reproducibility of Results, Models, Neurological, Reference Values, Adult, Female, Male