Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© Institute of Mathematical Statistics, 2018. We provide a new methodology for statistical recovery of single linear mixtures of piecewise constant signals (sources) with unknown mixing weights and change points in a multiscale fashion. We show exact recovery within an ε-neighborhood of the mixture when the sources take only values in a known finite alphabet. Based on this we provide the SLAM (Separates Linear Alphabet Mixtures) estimators for the mixing weights and sources. For Gaussian error, we obtain uniform confidence sets and optimal rates (up to log-factors) for all quantities. SLAM is efficiently computed as a nonconvex optimization problem by a dynamic program tailored to the finite alphabet assumption. Its performance is investigated in a simulation study. Finally, it is applied to assign copy-number aberrations from genetic sequencing data to different clones and to estimate their proportions.

Original publication

DOI

10.1214/17-AOS1565

Type

Journal article

Journal

Annals of Statistics

Publication Date

01/04/2018

Volume

46

Pages

711 - 744