Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background:The impact of HIV pre-exposure prophylaxis (PrEP) depends on infections averted by protecting vulnerable individuals as well as infections averted by preventing transmission by those who would have been infected if not receiving PrEP. Analysis of HIV phylogenies reveals risk factors for transmission, which we examine as potential criteria for allocating PrEP. Methods:We analyzed 6912 HIV-1 partial pol sequences from men who have sex with men (MSM) in the United Kingdom combined with global reference sequences and patient-level metadata. Population genetic models were developed that adjust for stage of infection, global migration of HIV lineages, and changing incidence of infection through time. Models were extended to simulate the effects of providing susceptible MSM with PrEP. Results:We found that young age <25 years confers higher risk of HIV transmission (relative risk = 2.52 [95% confidence interval, 2.32-2.73]) and that young MSM are more likely to transmit to one another than expected by chance. Simulated interventions indicate that 4-fold more infections can be averted over 5 years by focusing PrEP on young MSM. Conclusions:Concentrating PrEP doses on young individuals can avert more infections than random allocation.

Original publication

DOI

10.1093/infdis/jiy044

Type

Journal article

Journal

The Journal of infectious diseases

Publication Date

04/2018

Volume

217

Pages

1522 - 1529

Addresses

Department of Infectious Disease Epidemiology and the National Institute for Health Research Health Protection Research Unit on Modeling Methodology, Imperial College London.

Keywords

UK HIV Drug Resistance Database