Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Epidemiological analysis and mathematical models are now essential tools in understanding the dynamics of infectious diseases and in designing public health strategies to contain them. They have provided fundamental concepts, such as the basic and effective reproduction number, generation times, epidemic growth rates, and the role of pre-symptomatic infectiousness, which are crucial in characterising infectious diseases. These concepts are outlined and their relevance in designing control policies for outbreaks is discussed. They are illustrated using examples from the 2003 severe acute respiratory syndrome outbreak, which was brought under control within a year, and from pandemic influenza planning, where mathematical models have been used extensively.

Original publication




Journal article


Journal of public health policy

Publication Date





328 - 341


MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London W2 1PG, UK.


Humans, Severe Acute Respiratory Syndrome, Models, Statistical, Disease Outbreaks, United Kingdom