Many of the challenges which face modellers of directly transmitted pathogens also arise when modelling the epidemiology of pathogens with indirect transmission--whether through environmental stages, vectors, intermediate hosts or multiple hosts. In particular, understanding the roles of different hosts, how to measure contact and infection patterns, heterogeneities in contact rates, and the dynamics close to elimination are all relevant challenges, regardless of the mode of transmission. However, there remain a number of challenges that are specific and unique to modelling vector-borne diseases and macroparasites. Moreover, many of the neglected tropical diseases which are currently targeted for control and elimination are vector-borne, macroparasitic, or both, and so this article includes challenges which will assist in accelerating the control of these high-burden diseases. Here, we discuss the challenges of indirect measures of infection in humans, whether through vectors or transmission life stages and in estimating the contribution of different host groups to transmission. We also discuss the issues of "evolution-proof" interventions against vector-borne disease.

Original publication




Journal article



Publication Date





16 - 20


Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK; School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK. Electronic address:


Animals, Humans, Parasitic Diseases, Incidence, Models, Statistical, Risk Factors, Disease Reservoirs, Disease Vectors, Disease Transmission, Infectious, Neglected Diseases