Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation.

Original publication




Journal article


Hypertension (Dallas, Tex. : 1979)

Publication Date



From the Department of Health Sciences (L.V.W., A.M.E., N. Shrine, C.B., T.B., M.D.T.), and Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre (C.P.N., P.S.B., N.J.S.), University of Leicester, United Kingdom; Department of Epidemiology (A.V., P.J.v.d.M., I.M.N., H. Snieder), Division of Nephrology, Department of Internal Medicine (M.H.d.B., M.A.S.), Interdisciplinary Center Psychopathology and Emotion Regulation (IPCE) (A.J.O., H.R., C.A.H.), Department of Genetics, (M.S.), and Department of Cardiology (P.v.d.H.), University of Groningen, University Medical Center Groningen, The Netherlands; Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Iran (A.V.); Department of Psychiatry, VU University Medical Center, Neuroscience Campus Amsterdam, The Netherlands (R. Jansen); Hebrew SeniorLife, Harvard Medical School, Boston, MA (R. Joehanes); National Heart, Lung and Blood Institute's Framingham Heart Study, MA (R. Joehanes, A.D.J., M. Larson); Institute of Psychiatry, Psychology and Neuroscience (P.F.O.), and Department of Twin Research and Genetic Epidemiology (M.M., C. Menni, T.D.S.), King's College London, United Kingdom; Clinical Pharmacology, William Harvey Research Institute (C.P.C., H.R.W., M.R.B., M. Brown, B.M., M.R., P.B.M., M.J.C.) and NIHR Barts Cardiovascular Biomedical Research Unit (C.P.C., H.R.W., M.R.B., M. Brown, P.B.M., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA (L.M.R., F.G., P.M.R., D.I.C.); Department of Epidemiology (G.C.V., A. Hofman, A.G.U., O.H.F.), Genetic Epidemiology Unit, Department of Epidemiology (N.A., B.A.O., C.M.v.D.), and Department of Internal Medicine (A.G.U.), Erasmus MC, Rotterdam, The Netherlands; Department of Biological Psychology, Vrije Universiteit, Amsterdam, EMGO+ Institute, VU University Medical Center, The Netherlands (J.-J.H., E.J.d.G., G.W., D.I.B.); Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (R.J.S., M. Frånberg, A. Hamsten); Centre for Molecular Medicine, Karolinska Universitetsjukhuset, Solna, Sweden (R.J.S., M. Frånberg, A. Hamsten); Estonian Genome Center (T.E., E.O., A. Metspalu), Institute of Biomedicine and Translational Medicine (S.S., M. Laan), and Estonian Genome Center (M.P.), University of Tartu, Estonia; Divisions of Endocrinology/Children's Hospital, Boston, MA (T.E.); Broad Institute of Harvard and MIT, Cambridge, MA (T.E., C.M.L., C.N.-C.); Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (D.E.A., P.N., A. Chakravarti, G.B.E.); The Population Science Branch, Division of Intramural Research, National Heart Lung and Blood Institute (S.-J.H., D.L.), Laboratory of Neurogenetics, National Institute on Aging (M.A.N.), Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute (F.C.), and Center for Information Technology (Y.D., P.J.M., Q.T.N.), National Institutes of Health, Bethesda, MD; The Framingham Heart Study, Framingham, MA (S.-J.H., D.L.); The Institute for Translational Genomics and Population Sciences, Department of Pediatrics (X.G., J.Y.), and The Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine (J.I.R.), LABioMed at Harbor-UCLA Medical Center, Torrance, CA; Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland (Z.K., M. Bochud); Swiss Institute of Bioinformatics, Lausanne, Switzerland (Z.K.); Department of Cardiology (S. Trompet, J.W.J.) Department of Gerontology and Geriatrics (S. Trompet), Department of Clinical Epidemiology (R.L.-G., R.d.M., D.O.M.-K.), Department of Molecular Epidemiology (J.D.), and Department of Public Health and Primary Care