Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (odds ratio (OR) = 1.11, P = 5.7 × 10-15), which persisted after excluding loci implicated in previous studies (OR = 1.07, P = 1.7 × 10-6). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 × 10-11) and neurobehavioral phenotypes in mouse (OR = 1.18, P = 7.3 × 10-5). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by nonallelic homologous recombination.

Original publication

DOI

10.1038/ng.3725

Type

Journal article

Journal

Nature genetics

Publication Date

01/2017

Volume

49

Pages

27 - 35

Addresses

Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.

Keywords

Psychosis Endophenotypes International Consortium, CNV and Schizophrenia Working Groups of the Psychiatric Genomics Consortium, Humans, Genetic Predisposition to Disease, Genetic Markers, Risk Factors, Case-Control Studies, Schizophrenia, Genotype, Female, Male, Genome-Wide Association Study, Genetic Loci, DNA Copy Number Variations