Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2016 Informa UK Limited, trading as Taylor & Francis GroupThis work characterizes the dispersion of some popular random probability measures, including the bootstrap, the Bayesian bootstrap, and the Pólya tree prior. This dispersion is measured in terms of the variation of the Kullback–Leibler divergence of a random draw from the process to that of its baseline centring measure. By providing a quantitative expression of this dispersion around the baseline distribution, our work provides insight for comparing different parameterizations of the models and for the setting of prior parameters in applied Bayesian settings. This highlights some limitations of the existing canonical choice of parameter settings in the Pólya tree process.

Original publication

DOI

10.1080/02331888.2016.1258072

Type

Journal article

Journal

Statistics

Publication Date

17/11/2016

Pages

1 - 14