Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Characterizing the technical precision of measurements is a necessary stage in the planning of experiments and in the formal sample size calculation for optimal design. Instruments that measure multiple analytes simultaneously, such as in high-throughput assays arising in biomedical research, pose particular challenges from a statistical perspective. The current most popular method for assessing precision of high-throughput assays is by scatterplotting data from technical replicates. Here, we question the statistical rationale of this approach from both an empirical and theoretical perspective, illustrating our discussion using four example data sets from different genomic platforms. We demonstrate that such scatterplots convey little statistical information of relevance and are potentially highly misleading. We present an alternative framework for assessing the precision of high-throughput assays and planning biomedical experiments. Our methods are based on repeatability-a long-established statistical quantity also known as the intraclass correlation coefficient. We provide guidance and software for estimation and visualization of repeatability of high-throughput assays, and for its incorporation into study design. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

Original publication

DOI

10.1002/sim.7175

Type

Journal article

Journal

Statistics in medicine

Publication Date

02/2017

Volume

36

Pages

790 - 798

Addresses

Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, U.K.

Keywords

Humans, Data Interpretation, Statistical, Reproducibility of Results, Sample Size, Research Design, Statistics as Topic, High-Throughput Screening Assays