Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

Gonorrhea is a sexually transmitted disease causing growing concern, with a substantial increase in reported incidence over the past few years in the United Kingdom and rising levels of resistance to a wide range of antibiotics. Understanding its epidemiology is therefore of major biomedical importance, not only on a population scale but also at the level of direct transmission. However, the molecular typing techniques traditionally used for gonorrhea infections do not provide sufficient resolution to investigate such fine-scale patterns. Here we sequenced the genomes of 237 isolates from two local collections of isolates from Sheffield and London, each of which was resolved into a single type using traditional methods. The two data sets were selected to have different epidemiological properties: the Sheffield data were collected over 6 years from a predominantly heterosexual population, whereas the London data were gathered within half a year and strongly associated with men who have sex with men. Based on contact tracing information between individuals in Sheffield, we found that transmission is associated with a median time to most recent common ancestor of 3.4 months, with an upper bound of 8 months, which we used as a criterion to identify likely transmission links in both data sets. In London, we found that transmission happened predominantly between individuals of similar age, sexual orientation, and location and also with the same HIV serostatus, which may reflect serosorting and associated risk behaviors. Comparison of the two data sets suggests that the London epidemic involved about ten times more cases than the Sheffield outbreak.The recent increases in gonorrhea incidence and antibiotic resistance are cause for public health concern. Successful intervention requires a better understanding of transmission patterns, which is not uncovered by traditional molecular epidemiology techniques. Here we studied two outbreaks that took place in Sheffield and London, United Kingdom. We show that whole-genome sequencing provides the resolution to investigate direct gonorrhea transmission between infected individuals. Combining genome sequencing with rich epidemiological information about infected individuals reveals the importance of several transmission routes and risk factors, which can be used to design better control measures.

Original publication

DOI

10.1128/mBio.00525-16

Type

Journal article

Journal

mBio

Publication Date

28/06/2016

Volume

7

Addresses

Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom x.didelot@imperial.ac.uk sh16@sanger.ac.uk.

Keywords

Humans, Neisseria gonorrhoeae, Gonorrhea, Incidence, Risk Factors, Heterosexuality, Genomics, Disease Outbreaks, Phylogeny, Genome, Bacterial, Adult, Sexual Partners, London, Female, Male, Young Adult, Molecular Typing, High-Throughput Nucleotide Sequencing, United Kingdom, Sexual Minorities