Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abnormal rhythms of the heart are often preceded by the occurrence of ectopic beats. These are difficult to detect as their shape is not very different from that of a normal QRS complex, the main feature in the electrocardiogram. We show how an auto-associative multi-layer perception can be trained to detect normal beats only, so that the subtle abnormalities in shape of ectopic beats become clearly identifiable. This is a generic detector of abnormal beats (i.e. beats whose morphology is different from that of a normal beat) and we use ventricular ectopic beats to illustrate the performance of the algorithm. We also propose a new parameter, the variance ratio, to monitor the progress of learning in an auto-associative network.

Original publication

DOI

10.1023/A:1011373923479

Type

Journal article

Journal

Neural Processing Letters

Publication Date

01/08/2001

Volume

14

Pages

15 - 25