Abnormal rhythms of the heart are often preceded by the occurrence of ectopic beats. These are difficult to detect as their shape is not very different from that of a normal QRS complex, the main feature in the electrocardiogram. We show how an auto-associative multi-layer perception can be trained to detect normal beats only, so that the subtle abnormalities in shape of ectopic beats become clearly identifiable. This is a generic detector of abnormal beats (i.e. beats whose morphology is different from that of a normal beat) and we use ventricular ectopic beats to illustrate the performance of the algorithm. We also propose a new parameter, the variance ratio, to monitor the progress of learning in an auto-associative network.

Original publication

DOI

10.1023/A:1011373923479

Type

Journal article

Journal

Neural Processing Letters

Publication Date

01/08/2001

Volume

14

Pages

15 - 25