In the paper a pulse oximetry model is developed using an approach which combines both theoretical and empirical modelling. The optical properties of whole blood are measured as a function of cuvette depth by transmission spectrophotometry using red (660 nm) and infra-red (950 nm) light-emitting diodes as light sources. Twersky's theoretical model gives the best fit to the experimental data. A simple theoretical model which takes into account the nonlinear relationship between optical density and cuvette depth is then used to obtain an expression for the R:IR ratio, which relates the measurement of transmission at the two wavelengths. The R:IR ratio is found to be more or less independent of cuvette depth (SD = 0.14 at 100 per cent SaO2). To validate the predictions of the theoretical model, the results of a previous experiment in which the relationship between SaO2 and the R:IR ratio was recorded using a flexible cuvette are used. The experimental values are found to lie within one standard deviation from the theoretical curve relating SaO2 and the R:IR ratio. It is argued that a reasonably accurate model for pulse oximetry which is based on whole blood and not haemoglobin solutions has been developed.

Type

Journal article

Journal

Med Biol Eng Comput

Publication Date

05/1993

Volume

31

Pages

291 - 300

Keywords

Humans, Mathematics, Models, Cardiovascular, Optics and Photonics, Oximetry, Oxygen, Pulsatile Flow