Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We develop an individual based model of bearded pig abundance which predicts population dynamics based on the processes of energy accumulation and expenditure, reproduction and mortality of individual pigs. Because fatness is a key indicator of condition and reproductive potential in bearded pigs, processes are represented in terms of a fatness index variable. Only a small number of parameters are used in this simple model; these were chosen on the basis of fatness index data and qualitative observations of bearded pig population dynamics. The model was found to be accurate in predicting the timing of observed pig eruptions, and robust in that model results were unaffected by moderate variation in parameter values. There was insufficient quantitative data to obtain precise predictions of fatness and abundance, but qualitative insights about the effects of the size and timing of fruiting events on pig abundance were obtained. The results showed that a single fruiting peak will not produce a bearded pig eruption, no matter how large the fruiting event is, because the duration of the fruiting is too short to allow exponential growth of the population. Consecutive masting events are necessary for an eruption, because if events are separated by more than 1 year, the population will decline to its minimum fatness and abundance levels. It is also necessary for at least one of the fruiting events in a consecutive sequence to be a large event, as consecutive small fruiting events do not increase the fatness enough to cause an eruption. These insights help to explain and predict the effects of changes in mast fruiting patterns on bearded pig populations, such as the predicted increase in frequency and reduction in size of masting fruiting events as a result of climate change. © 2004 Elsevier B.V. All rights reserved.

Original publication

DOI

10.1016/j.ecolmodel.2004.06.026

Type

Journal article

Journal

Ecological Modelling

Publication Date

20/01/2005

Volume

181

Pages

123 - 137