Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Structural analysis of MRI data on the cortical surface usually focuses on cortical thickness. Cortical surface area, when considered, has been measured only over gross regions or approached indirectly via comparisons with a standard brain. Here we demonstrate that direct measurement and comparison of the surface area of the cerebral cortex at a fine scale is possible using mass conservative interpolation methods. We present a framework for analyses of the cortical surface area, as well as for any other measurement distributed across the cortex that is areal by nature. The method consists of the construction of a mesh representation of the cortex, registration to a common coordinate system and, crucially, interpolation using a pycnophylactic method. Statistical analysis of surface area is done with power-transformed data to address lognormality, and inference is done with permutation methods. We introduce the concept of facewise analysis, discuss its interpretation and potential applications.

Original publication

DOI

10.1016/j.neuroimage.2012.03.026

Type

Journal article

Journal

NeuroImage

Publication Date

07/2012

Volume

61

Pages

1428 - 1443

Addresses

Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA. anderson.winkler@yale.edu

Keywords

Cerebral Cortex, Humans, Image Interpretation, Computer-Assisted, Magnetic Resonance Imaging, Brain Mapping