Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We present a study of the spatial variation of nuclear morphology of stromal and cancer-associated fibroblasts in the mouse mammary gland. The work is part of a framework being developed for the analysis of the tumor microenvironment in breast cancer. Recent research has uncovered the role of stromal cells in promoting tumor growth and progression. In specific, studies have indicated that stromal fibroblasts - formerly considered to be passive entities in the extra-cellular matrix - play an active role in the progression of tumor in mammary tissue. We have focused on the analysis of the nuclear morphology of fibroblasts, which several studies have shown to be a critical phenotype in cancer. An essential component of our approach is that the nuclear morphology is studied within the 3D spatial context of the tissue, thus enabling us to pose questions about how the locus of a cell relates to its morphology, and possibly to its function. In order to make quantitative comparisons between nuclear populations, we build statistical shape models of cell populations and infer differences between the populations through these models. We present our observation on both normal and tumor tissues from the mouse mammary gland. ©2010 IEEE.

Original publication




Journal article


2010 7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2010 - Proceedings

Publication Date



1293 - 1296