Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Automated segmentation and quantification of cellular and subcellular components in multiplexed images has allowed for a combination of both spatial and protein expression information to become available for analysis. However, performing analyses across multiple patients and tissue types continues to be a challenge, as well as the greater challenge of tissue classification itself. We propose a model of tissues as interconnected networks of epithelial cells whose connectivity is determined by their size, specific expression levels, and proximity to other cells. These Biomarker Enhanced Tissue Networks (BETN) reflect both the individual nature of the cells and the complex cell to cell relationships within the tissue. Performing a simple analysis of such tissue networks managed to successfully classify epithelial cells from stromal cells across multiple patients and tissue types. Further experiments show that significant information about the structure and nature of tissues can also be extracted through analysis of the networks, which will hopefully move towards the eventual goal of true tissue classification. © 2012 IEEE.

Original publication




Conference paper

Publication Date



162 - 165