Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A growing number of screening applications require the automated monitoring of cell populations in a high-throughput, high-content environment. These applications depend on accurate cell tracking of individual cells that display various behaviors including mitosis, merging, rapid movement, and entering and leaving the field of view. Many approaches to cell tracking have been developed in the past, but most are quite complex, require extensive post-processing, and are parameter intensive. To overcome such issues, we present a general, consistent, and extensible tracking approach that explicitly models cell behaviors in a graph-theoretic framework. We introduce a way of extending the standard minimum-cost flow algorithm to account for mitosis and merging events through a coupling operation on particular edges. We then show how the resulting graph can be efficiently solved using algorithms such as linear programming to choose the edges of the graph that observe the constraints while leading to the lowest overall cost. This tracking algorithm relies on accurate denoising and segmentation steps for which we use a wavelet-based approach that is able to accurately segment cells even in images with very low contrast-to-noise. In addition, the framework is able to measure and correct for microscope defocusing and stage shift. We applied the algorithms on nearly 6000 images of 400,000 cells representing 32,000 tracks taken from five separate datasets, each composed of multiple wells. Our algorithm was able to segment and track cells and detect different cell behaviors with an accuracy of over 99%. This overall framework enables accurate quantitative analysis of cell events and provides a valuable tool for high-throughput biological studies.

Original publication




Journal article


Medical image analysis

Publication Date





650 - 668


GE Global Research, One Research Circle, Niskayuna, NY 12309, USA.


Image Interpretation, Computer-Assisted, Microscopy, Video, Image Enhancement, Flow Cytometry, Sensitivity and Specificity, Reproducibility of Results, Algorithms, Pattern Recognition, Automated, Cell Tracking