Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We evaluate residual aliasing among simultaneously excited and acquired slices in slice accelerated multiband (MB) echo planar imaging (EPI). No in-plane accelerations were used in order to maximize and evaluate achievable slice acceleration factors at 3 T. We propose a novel leakage (L-) factor to quantify the effects of signal leakage between simultaneously acquired slices. With a standard 32-channel receiver coil at 3 T, we demonstrate that slice acceleration factors of up to eight (MB=8) with blipped controlled aliasing in parallel imaging (CAIPI), in the absence of in-plane accelerations, can be used routinely with acceptable image quality and integrity for whole brain imaging. Spectral analyses of single-shot fMRI time series demonstrate that temporal fluctuations due to both neuronal and physiological sources were distinguishable and comparable up to slice-acceleration factors of nine (MB=9). The increased temporal efficiency could be employed to achieve, within a given acquisition period, higher spatial resolution, increased fMRI statistical power, multiple TEs, faster sampling of temporal events in a resting state fMRI time series, increased sampling of q-space in diffusion imaging, or more quiet time during a scan.

Original publication

DOI

10.1016/j.neuroimage.2013.07.055

Type

Journal article

Journal

NeuroImage

Publication Date

12/2013

Volume

83

Pages

991 - 1001

Addresses

Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, USA. Electronic address: jxu@umn.edu.

Keywords

Brain, Humans, Image Interpretation, Computer-Assisted, Echo-Planar Imaging, Brain Mapping, Algorithms