Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Resting-state functional magnetic resonance imaging (rfMRI) allows one to study functional connectivity in the brain by acquiring fMRI data while subjects lie inactive in the MRI scanner, and taking advantage of the fact that functionally related brain regions spontaneously co-activate. rfMRI is one of the two primary data modalities being acquired for the Human Connectome Project (the other being diffusion MRI). A key objective is to generate a detailed in vivo mapping of functional connectivity in a large cohort of healthy adults (over 1000 subjects), and to make these datasets freely available for use by the neuroimaging community. In each subject we acquire a total of 1h of whole-brain rfMRI data at 3 T, with a spatial resolution of 2×2×2 mm and a temporal resolution of 0.7s, capitalizing on recent developments in slice-accelerated echo-planar imaging. We will also scan a subset of the cohort at higher field strength and resolution. In this paper we outline the work behind, and rationale for, decisions taken regarding the rfMRI data acquisition protocol and pre-processing pipelines, and present some initial results showing data quality and example functional connectivity analyses.

Original publication

DOI

10.1016/j.neuroimage.2013.05.039

Type

Journal article

Journal

NeuroImage

Publication Date

10/2013

Volume

80

Pages

144 - 168

Addresses

FMRIB (Oxford Centre for Functional MRI of the Brain), Oxford University, Oxford, UK. steve@fmrib.ox.ac.uk

Keywords

WU-Minn HCP Consortium, Brain, Nerve Net, Humans, Magnetic Resonance Imaging, Models, Neurological, Rest, Models, Anatomic, Connectome