Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Glyph-based visualization can offer elegant and concise presentation of multivariate information while enhancing speed and ease in visual search experienced by users. As with icon designs, glyphs are usually created based on the designers' experience and intuition, often in a spontaneous manner. Such a process does not scale well with the requirements of applications where a large number of concepts are to be encoded using glyphs. To alleviate such limitations, we propose a new systematic process for glyph design by exploring the parallel between the hierarchy of concept categorization and the ordering of discriminative capacity of visual channels. We examine the feasibility of this approach in an application where there is a pressing need for an efficient and effective means to visualize workflows of biological experiments. By processing thousands of workflow records in a public archive of biological experiments, we demonstrate that a cost-effective glyph design can be obtained by following a process of formulating a taxonomy with the aid of computation, identifying visual channels hierarchically, and defining application-specific abstraction and metaphors.

Original publication

DOI

10.1109/tvcg.2012.271

Type

Journal article

Journal

IEEE transactions on visualization and computer graphics

Publication Date

12/2012

Volume

18

Pages

2603 - 2612

Addresses

Oxford e-Research Centre and Department of Computer Science, University of Oxford, UK. eamonn.maguire@st-annes.ox.ac.uk

Keywords

Humans, Computational Biology, Algorithms, Research Design, Classification, Semantics, Computer Graphics, Workflow