Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Highly recombinant populations derived from inbred lines, such as advanced intercross lines and heterogeneous stocks, can be used to map loci far more accurately than is possible with standard intercrosses. However, the varying degrees of relatedness that exist between individuals complicate analysis, potentially leading to many false positive signals. We describe a method to deal with these problems that does not require pedigree information and accounts for model uncertainty through model averaging. In our method, we select multiple quantitative trait loci (QTL) models using forward selection applied to resampled data sets obtained by nonparametric bootstrapping and subsampling. We provide model-averaged statistics about the probability of loci or of multilocus regions being included in model selection, and this leads to more accurate identification of QTL than by single-locus mapping. The generality of our approach means it can potentially be applied to any population of unknown structure.

Original publication




Journal article



Publication Date





1263 - 1277


Wellcome Trust Centre for Human Genetics, Roosevelt Dr., Oxford OX3 7BN, United Kingdom.


Models, Statistical, Chromosome Mapping, Crosses, Genetic, Genetics, Population, Quantitative Trait Loci, Models, Genetic