Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: In addition to their use in detecting undesired real-time PCR products, melting temperatures are useful for detecting variations in the desired target sequences. Methodological improvements in recent years allow the generation of high-resolution melting-temperature (Tm) data. However, there is currently no convention on how to statistically analyze such high-resolution Tm data. RESULTS: Mixture model analysis was applied to Tm data. Models were selected based on Akaike's information criterion. Mixture model analysis correctly identified categories in Tm data obtained for known plasmid targets. Using simulated data, we investigated the number of observations required for model construction. The precision of the reported mixing proportions from data fitted to a preconstructed model was also evaluated. CONCLUSION: Mixture model analysis of Tm data allows the minimum number of different sequences in a set of amplicons and their relative frequencies to be determined. This approach allows Tm data to be analyzed, classified, and compared in an unbiased manner.

Original publication

DOI

10.1186/1471-2105-9-370

Type

Journal article

Journal

BMC bioinformatics

Publication Date

01/2008

Volume

9

Addresses

Department of Neuroscience, Karolinska Institutet, Retzius Väg, Stockholm, Sweden. christoffer.nellaker@ki.se

Keywords

DNA, Models, Statistical, Reverse Transcriptase Polymerase Chain Reaction, Sequence Analysis, DNA, Algorithms, Transition Temperature, Models, Chemical, Computer Simulation