Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVES:To investigate the genotypic and phenotypic effects of in vitro resistance selection with lamivudine and/or the second generation non-nucleoside reverse transcriptase inhibitor (NNRTI) quinoxaline HBY097 using HIV-1 isolates carrying the multi-nucleoside resistance pattern linked to the Q151M mutation. METHODS:Virus strains were selected in C8166 cells in the presence of increasing concentrations of lamivudine or HBY097. In parallel control experiments, the virus was cultured in C8166 cells in the absence of drugs. The entire reverse transcriptase encoding region was amplified using polymerase chain reaction and was subsequently sequenced. Antiviral activities of drugs were evaluated in C8166 cells. RESULTS:High-level resistant viruses were selected rapidly in the presence of lamivudine and quinoxaline (less than 10 passages). The multi-nucleoside resistance mutations were stable during in vitro resistance selection. Lamivudine elicited the acquisition of the M184I mutation. Phenotypic resistance to all nucleoside-analog reverse transcriptase inhibitors (NRTIs) was increased when M184I was added to the multi-nucleoside resistance background in the absence of NNRTI-resistance mutations. In most cases of HBY097 resistance selection, at least two mutations associated with NNRTI resistance resulted in high-level NNRTI resistance. The NNRTI resistance-related mutations partially reversed the phenotypic resistance to most NRTIs, except to abacavir. The addition of the M184I mutation to the NNRTI-multi-nucleoside resistance set abolished this antagonizing effect for didanosine, zalcitabine and lamivudine, but further potentiated the phenotypic reversal for zidovudine and stavudine. CONCLUSION:Changes in the non-nucleoside binding pocket must affect the conformation of residues at the dNTP binding site, and can result in a partial phenotypic reversal of the multi-nucleoside resistance phenotype.

Original publication

DOI

10.1097/00002030-200103300-00003

Type

Journal article

Journal

AIDS (London, England)

Publication Date

03/2001

Volume

15

Pages

553 - 561

Addresses

Rega Institute for Medical Research and University Hospitals, Katholieke Universiteit Leuven, Belgium.

Keywords

Humans, HIV-1, HIV Infections, Quinoxalines, Nucleosides, Lamivudine, Reverse Transcriptase Inhibitors, Antiviral Agents, Anti-HIV Agents, Drug Resistance, Microbial, Drug Resistance, Multiple, Binding Sites, Genotype, Phenotype, Mutation, HIV Reverse Transcriptase