Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Augmenting traditional genome-wide association studies (GWAS) with advanced machine learning algorithms can allow the detection of novel signals in available cohorts. We introduce "genome-wide association neural networks (GWANN)" a novel approach that uses neural networks (NNs) to perform a gene-level association study with family history of Alzheimer's disease (AD). In UK Biobank, we defined cases (n = 42 110) as those with AD or family history of AD and sampled an equal number of controls. The data was split into an 80:20 ratio of training and testing samples, and GWANN was trained on the former followed by identifying associated genes using its performance on the latter. Our method identified 18 genes to be associated with family history of AD. APOE, BIN1, SORL1, ADAM10, APH1B, and SPI1 have been identified by previous AD GWAS. Among the 12 new genes, PCDH9, NRG3, ROR1, LINGO2, SMYD3, and LRRC7 have been associated with neurofibrillary tangles or phosphorylated tau in previous studies. Furthermore, there is evidence for differential transcriptomic or proteomic expression between AD and healthy brains for 10 of the 12 new genes. A series of post hoc analyses resulted in a significantly enriched protein-protein interaction network (P-value 

Original publication

DOI

10.1093/bib/bbae704

Type

Journal

Briefings in bioinformatics

Publication Date

11/2024

Volume

26

Addresses

Department of Psychiatry, University of Oxford, Oxford, United Kingdom.