Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Tests for variance or scale effects due to covariates are used in many areas and recently, in genomic and genetic association studies. We study score tests based on location-scale models with arbitrary error distributions that allow incorporation of additional adjustment covariates. Tests based on Gaussian and Laplacian double generalized linear models are examined in some detail. Numerical properties of the tests under Gaussian and other error distributions are examined. Our results show that the use of model-based asymptotic distributions with score tests for scale effects does not control type 1 error well in many settings of practical relevance. We consider simple statistics based on permutation distribution approximations, which correspond to well-known statistics derived by another approach. They are shown to give good type 1 error control under different error distributions and under covariate distribution imbalance. The methods are illustrated through a differential gene expression analysis involving breast cancer tumor samples.

Original publication

DOI

10.1002/sim.9000

Type

Journal article

Journal

Statistics in medicine

Publication Date

07/2021

Volume

40

Pages

3808 - 3822

Addresses

Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada.

Keywords

Humans, Models, Statistical, Linear Models, Genomics, Genetic Association Studies