Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Single-cell RNA sequencing can reveal valuable insights into cellular heterogeneity within tumour microenvironments (TMEs), paving the way for a deep understanding of cellular mechanisms contributing to cancer. However, high heterogeneity among the same cancer types and low transcriptomic variation in immune cell subsets present challenges for accurate, high-resolution confirmation of cells' identities. Here we present scATOMIC; a modular annotation tool for malignant and non-malignant cells. We trained scATOMIC on >300,000 cancer, immune, and stromal cells defining a pan-cancer reference across 19 common cancers and employ a hierarchical approach, outperforming current classification methods. We extensively confirm scATOMIC's accuracy on 225 tumour biopsies encompassing >350,000 cancer and a variety of TME cells. Lastly, we demonstrate scATOMIC's practical significance to accurately subset breast cancers into clinically relevant subtypes and predict tumours' primary origin across metastatic cancers. Our approach represents a broadly applicable strategy to analyse multicellular cancer TMEs.

Original publication

DOI

10.1038/s41467-023-37353-8

Type

Journal article

Journal

Nature communications

Publication Date

03/2023

Volume

14

Addresses

Ontario Institute for Cancer Research, Toronto, ON, Canada.

Keywords

Stromal Cells, Humans, Breast Neoplasms, Gene Expression Profiling, Female, Tumor Microenvironment, Transcriptome