Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recent studies have found that many proteins contain regions that do not form well defined three-dimensional structures in their native states. The study and detection of such disordered regions is very important both for facilitating structural analysis and to aid understanding of protein function. A newly developed pattern recognition algorithm termed a "Bio-basis Function Neural Network" has been applied to the detection of disordered regions in proteins. Different models were trained studying the effect of changing the size of the window used for residue classification. Ten-fold cross validation showed that the estimated prediction accuracy was 95.2% for a window size of 21 residues and an overlap threshold of 30%. Blind tests using the trained models on a data set unrelated to the training set gave a regional prediction accuracy of 81.4% (+/-0.9%).


Conference paper

Publication Date





108 - 116