Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

MicroRNAs, crucial in regulating protein-coding gene expression, are implicated in various diseases. We performed a genome-wide association study of plasma miRNAs (ex-miRNAs) in 3,743 Framingham Heart Study (FHS) participants and identified 1,027 cis-ex-miRNA-eQTLs (cis-exQTLs) for 37 ex-miRNAs, with 55% replication in an independent study. Colocalization analyses suggested potential genetic coregulation of ex-miRNAs with whole blood mRNAs. Mendelian randomization indicated 29 ex-miRNAs potentially influencing 35 traits. Notably, the chromosome 14q23 and 14q32 miRNA clusters emerged as the top signal, contributing over 50% of the significant cis-exQTL results, and were associated with a diverse range of traits including platelet count. Correlations of 10 ex-miRNAs (such as miR-376c-3p) in 14q32 with platelet count and volume were confirmed in FHS participants. These findings shed light on the genetic basis of ex-miRNA expression and their involvement in complex traits.

Original publication

DOI

10.1016/j.isci.2024.110988

Type

Journal

iScience

Publication Date

18/10/2024

Volume

27