Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Verbal autopsy (VA) narratives play a crucial role in understanding and documenting the causes of mortality, especially in regions lacking robust medical infrastructure. In this study, we propose a comprehensive approach to extract mortality causes and identify prevalent diseases from VA narratives utilizing advanced text mining techniques, so as to better understand the underlying health issues leading to mortality. Our methodology integrates n-gram-based language processing, Latent Dirichlet Allocation (LDA), and BERTopic, offering a multi-faceted analysis to enhance the accuracy and depth of information extraction. This is a retrospective study that uses secondary data analysis. We used data from the Agincourt Health and Demographic Surveillance Site (HDSS), which had 16338 observations collected between 1993 and 2015. Our text mining steps entailed data acquisition, pre-processing, feature extraction, topic segmentation, and discovered knowledge. The results suggest that the HDSS population may have died from mortality causes such as vomiting, chest/stomach pain, fever, coughing, loss of weight, low energy, headache. Additionally, we discovered that the most prevalent diseases entailed human immunodeficiency virus (HIV), tuberculosis (TB), diarrhoea, cancer, neurological disorders, malaria, diabetes, high blood pressure, chronic ailments (kidney, heart, lung, liver), maternal and accident related deaths. This study is relevant in that it avails valuable insights regarding mortality causes and most prevalent diseases using novel text mining approaches. These results can be integrated in the diagnosis pipeline for ease of human annotation and interpretation. As such, this will help with effective informed intervention programmes that can improve primary health care systems and chronic based delivery, thus increasing life expectancy.

Original publication

DOI

10.1371/journal.pone.0308452

Type

Journal

PloS one

Publication Date

01/2024

Volume

19

Addresses

Department of Epidemiology and Biostatistics, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa.

Keywords

Humans, Autopsy, Narration, Prevalence, Cause of Death, Retrospective Studies, Natural Language Processing, Data Mining