Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BackgroundPrevious studies have demonstrated that incorporating a polygenic risk score (PRS) to existing risk prediction models for breast cancer improves model fit, but to determine its clinical utility the impact on risk categorization needs to be established. We add a PRS to two well-established models and quantify the difference in classification using the net reclassification improvement (NRI).MethodsWe analyzed data from 126,490 post-menopausal women of "White British" ancestry, aged 40 to 69 years at baseline from the UK Biobank prospective cohort. The breast cancer outcome was derived from linked registry data and hospital records. We combined a PRS for breast cancer with 10-year risk scores from the Tyrer-Cuzick and Gail models, and compared these to the risk scores from the models using phenotypic variables alone. We report metrics of discrimination and classification, and consider the importance of the risk threshold selected.ResultsThe Harrell's C statistic of the 10-year risk from the Tyrer-Cuzick and Gail models was 0.57 and 0.54, respectively, increasing to 0.67 when the PRS was included. Inclusion of the PRS gave a positive NRI for cases in both models [0.080 (95% confidence interval (CI), 0.053-0.104) and 0.051 (95% CI, 0.030-0.073), respectively], with negligible impact on controls.ConclusionsThe addition of a PRS for breast cancer to the well-established Tyrer-Cuzick and Gail models provides a substantial improvement in the prediction accuracy and risk stratification.ImpactThese findings could have important implications for the ongoing discussion about the value of PRS in risk prediction models and screening.

Original publication

DOI

10.1158/1055-9965.epi-23-1432

Type

Journal article

Journal

Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology

Publication Date

06/2024

Volume

33

Pages

812 - 820

Addresses

Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.

Keywords

Humans, Breast Neoplasms, Genetic Predisposition to Disease, Risk Assessment, Risk Factors, Prospective Studies, Multifactorial Inheritance, Adult, Aged, Middle Aged, Biological Specimen Banks, Female, United Kingdom, Genetic Risk Score, UK Biobank