Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Aims/hypothesisIn a recent study using a standard additive genetic model, we identified a TBC1D4 loss-of-function variant with a large recessive impact on risk of type 2 diabetes in Greenlanders. The aim of the current study was to identify additional genetic variation underlying type 2 diabetes using a recessive genetic model, thereby increasing the power to detect variants with recessive effects.MethodsWe investigated three cohorts of Greenlanders (B99, n = 1401; IHIT, n = 3115; and BBH, n = 547), which were genotyped using Illumina MetaboChip. Of the 4674 genotyped individuals passing quality control, 4648 had phenotype data available, and type 2 diabetes association analyses were performed for 317 individuals with type 2 diabetes and 2631 participants with normal glucose tolerance. Statistical association analyses were performed using a linear mixed model.ResultsUsing a recessive genetic model, we identified two novel loci associated with type 2 diabetes in Greenlanders, namely rs870992 in ITGA1 on chromosome 5 (OR 2.79, p = 1.8 × 10-8), and rs16993330 upstream of LARGE1 on chromosome 22 (OR 3.52, p = 1.3 × 10-7). The LARGE1 variant did not reach the conventional threshold for genome-wide significance (p -8) but did withstand a study-wide Bonferroni-corrected significance threshold. Both variants were common in Greenlanders, with minor allele frequencies of 23% and 16%, respectively, and were estimated to have large recessive effects on risk of type 2 diabetes in Greenlanders, compared with additively inherited variants previously observed in European populations.Conclusions/interpretationWe demonstrate the value of using a recessive genetic model in a historically small and isolated population to identify genetic risk variants. Our findings give new insights into the genetic architecture of type 2 diabetes, and further support the existence of high-effect genetic risk factors of potential clinical relevance, particularly in isolated populations.Data availabilityThe Greenlandic MetaboChip-genotype data are available at European Genome-Phenome Archive (EGA; https://ega-archive.org/ ) under the accession EGAS00001002641.

Original publication

DOI

10.1007/s00125-018-4659-2

Type

Journal article

Journal

Diabetologia

Publication Date

09/2018

Volume

61

Pages

2005 - 2015

Addresses

Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.

Keywords

Chromosomes, Human, Pair 5, Chromosomes, Human, Pair 22, Humans, Diabetes Mellitus, Type 2, Genetic Predisposition to Disease, N-Acetylglucosaminyltransferases, Gene Frequency, Genotype, Polymorphism, Single Nucleotide, Greenland, Female, Male, Genome-Wide Association Study