Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Association studies using genetic data from SNP-chip-based imputation or low-depth sequencing data provide a cost-efficient design for large-scale association studies. We explore methods for performing association studies applicable to such genetic data and investigate how using different priors when estimating genotype probabilities affects the association results. Our proposed method, ANGSD-asso's latent model, models the unobserved genotype as a latent variable in a generalized linear model framework. The software is implemented in C/C++ and can be run multi-threaded. ANGSD-asso is based on genotype probabilities, which can be estimated using either the sample allele frequency or the individual allele frequencies as a prior. We explore through simulations how genotype probability-based methods compare with using genetic dosages. Our simulations show that in a structured population using the individual allele frequency prior has better power than the sample allele frequency. In scenarios with sequencing depth and phenotype correlation ANGSD-asso's latent model has higher statistical power and less bias than using dosages. Adding additional covariates to the linear model of ANGSD-asso's latent model has higher statistical power and less bias than other methods that accommodate genotype uncertainty, while also being much faster. This is shown with imputed data from UK Biobank and simulations.

Original publication

DOI

10.1093/g3journal/jkab385

Type

Journal article

Journal

G3 (Bethesda, Md.)

Publication Date

01/2022

Volume

12

Addresses

Department of Biology, The Bioinformatics Centre, University of Copenhagen, 2200 Copenhagen N, Denmark.

Keywords

Uncertainty, Gene Frequency, Genotype, Polymorphism, Single Nucleotide, Genome-Wide Association Study