Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The common Arctic-specific LDLR p.G137S variant was recently shown to be associated with elevated lipid levels. Motivated by this, we aimed to investigate the effect of p.G137S on metabolic health and cardiovascular disease risk among Greenlanders to quantify its impact on the population. In a population-based Greenlandic cohort (n = 5,063), we tested for associations between the p.G137S variant and metabolic health traits as well as cardiovascular disease risk based on registry data. In addition, we explored the variant's impact on plasma NMR measured lipoprotein concentration and composition in another Greenlandic cohort (n = 1,629); 29.5% of the individuals in the cohort carried at least one copy of the p.G137S risk allele. Furthermore, 25.4% of the heterozygous and 54.7% of the homozygous carriers had high levels (>4.9 mmol/L) of serum LDL cholesterol, which is above the diagnostic level for familial hypercholesterolemia (FH). Moreover, p.G137S was associated with an overall atherosclerotic lipid profile, and increased risk of ischemic heart disease (HR [95% CI], 1.51 [1.18-1.92], p = 0.00096), peripheral artery disease (1.69 [1.01-2.82], p = 0.046), and coronary operations (1.78 [1.21-2.62], p = 0.0035). Due to its high frequency and large effect sizes, p.G137S has a marked population-level impact, increasing the risk of FH and cardiovascular disease for up to 30% of the Greenlandic population. Thus, p.G137S is a potential marker for early intervention in Arctic populations.

Original publication

DOI

10.1016/j.xhgg.2022.100118

Type

Journal article

Journal

HGG advances

Publication Date

10/2022

Volume

3

Addresses

Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark.