Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The brain is a complex system comprising a myriad of interacting neurons, posing significant challenges in understanding its structure, function, and dynamics. Network science has emerged as a powerful tool for studying such interconnected systems, offering a framework for integrating multiscale data and complexity. To date, network methods have significantly advanced functional imaging studies of the human brain and have facilitated the development of control theory-based applications for directing brain activity. Here, we discuss emerging frontiers for network neuroscience in the brain atlas era, addressing the challenges and opportunities in integrating multiple data streams for understanding the neural transitions from development to healthy function to disease. We underscore the importance of fostering interdisciplinary opportunities through workshops, conferences, and funding initiatives, such as supporting students and postdoctoral fellows with interests in both disciplines. By bringing together the network science and neuroscience communities, we can develop novel network-based methods tailored to neural circuits, paving the way toward a deeper understanding of the brain and its functions, as well as offering new challenges for network science.

Original publication




Journal article


The Journal of neuroscience : the official journal of the Society for Neuroscience

Publication Date





5989 - 5995


Biophysics Program, Harvard University, Cambridge, 02138, Massachusetts


Brain, Neurons, Humans, Drive, Neurosciences, Research Personnel