Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Brain ageing is a highly variable, spatially and temporally heterogeneous process, marked by numerous structural and functional changes. These can cause discrepancies between individuals' chronological age and the apparent age of their brain, as inferred from neuroimaging data. Machine learning models, and particularly Convolutional Neural Networks (CNNs), have proven adept in capturing patterns relating to ageing induced changes in the brain. The differences between the predicted and chronological ages, referred to as brain age deltas, have emerged as useful biomarkers for exploring those factors which promote accelerated ageing or resilience, such as pathologies or lifestyle factors. However, previous studies rely only on structural neuroimaging for predictions, overlooking potentially informative functional and microstructural changes. Here we show that multiple contrasts derived from different MRI modalities can predict brain age, each encoding bespoke brain ageing information. By using 3D CNNs and UK Biobank data, we found that 57 contrasts derived from structural, susceptibilityweighted, diffusion, and functional MRI can successfully predict brain age. For each contrast, different patterns of association with non-imaging phenotypes were found, resulting in a total of 191 unique, statistically significant associations. Furthermore, we found that ensembling data from multiple contrasts results in both higher prediction accuracies and stronger correlations to non-imaging measurements. Our results demonstrate that other 3D contrasts and modalities, which have not been considered so far for the task of brain age prediction, encode different information about the ageing brain. We envision our work as being the starting point for future investigations into the causal links underpinning the observed brain age deltas and nonimaging measurement associations. For instance, drug effects can be monitored, given that certain medications correlated with accelerated brain ageing. Furthermore, continued development of brain age models could facilitate their deployment in clinical trials for recruitment and monitoring, and hospitals for diagnostic and screening tasks.

Original publication

DOI

10.1109/SDS57534.2023.00010

Type

Conference paper

Publication Date

01/01/2023

Pages

17 - 25