Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Glomerular filtration rate (GFR) decline is causally associated with kidney failure and is a candidate surrogate endpoint for clinical trials of chronic kidney disease (CKD) progression. Analyses across a diverse spectrum of interventions and populations is required for acceptance of GFR decline as an endpoint. In an analysis of individual participant data, for each of 66 studies (total of 186,312 participants), we estimated treatment effects on the total GFR slope, computed from baseline to 3 years, and chronic slope, starting at 3 months after randomization, and on the clinical endpoint (doubling of serum creatinine, GFR -1 per 1.73 m2 or kidney failure with replacement therapy). We used a Bayesian mixed-effects meta-regression model to relate treatment effects on GFR slope with those on the clinical endpoint across all studies and by disease groups (diabetes, glomerular diseases, CKD or cardiovascular diseases). Treatment effects on the clinical endpoint were strongly associated with treatment effects on total slope (median coefficient of determination (R2) = 0.97 (95% Bayesian credible interval (BCI) 0.82-1.00)) and moderately associated with those on chronic slope (R2 = 0.55 (95% BCI 0.25-0.77)). There was no evidence of heterogeneity across disease. Our results support the use of total slope as a primary endpoint for clinical trials of CKD progression.

Original publication




Journal article


Nature medicine

Publication Date



Division of Nephrology, Tufts Medical Center, Boston, MA, USA.


CKD-EPI Clinical Trials Consortium