Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In selected populations, families superior for the selected trait are likely to contribute more offspring to the next generation than inferior families and, as a consequence, the rate of inbreeding is likely to be higher in selected populations than in randomly mated populations of the same structure. Methods to predict rates of inbreeding in selected populations are discussed. The method of Burrows based on probabilities of coselection is reappraised in conjunction with the transition matrix method of Woolliams. The method of Latter based on variances and covariances of family size is also examined. These methods are one-generation approaches in the sense that they only account for selective advantage over a single generation, from parents to offspring. Two-generation methods are developed that account for selective advantage over two generations, from grandparent to grandoffspring as well as from parent to offspring. Predictions are compared to results from simulation. The best one-generation method was found to underpredict rates of inbreeding by 10-25%, and the two-generation methods were found to underpredict rates of inbreeding by 9-18%.

Original publication

DOI

10.1007/bf00226752

Type

Journal

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik

Publication Date

10/1990

Volume

80

Pages

503 - 512

Addresses

University of Edinburgh, Institute of Animal Genetics, West Mains Road, EH9 3JN, Edinburgh, UK.