Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The current paradigm within genetic diagnostics is to test individuals only at loci known to affect risk of complex disease-yet the technology exists to genotype an individual at thousands of loci across the genome. We investigated whether information from genome-wide association studies could be harnessed to improve discrimination of complex disease affection status. We employed genome-wide data from the Wellcome Trust Case Control Consortium to test this hypothesis. Each disease cohort together with the same set of controls were split into two samples-a 'Training Set', where thousands of SNPs that might predispose to disease risk were identified and a 'Prediction Set', where the discriminatory ability of these SNPs was assessed. Genome-wide scores consisting of, for example, the total number of risk alleles an individual carries was calculated for each individual in the prediction set. Case-control status was regressed on this score and the area under the receiver operator characteristic curve (AUC) estimated. In most cases, a liberal inclusion of SNPs in the genome-wide score improved AUC compared with a more stringent selection of top SNPs, but did not perform as well as selection based upon established variants. The addition of genome-wide scores to known variant information produced only a limited increase in discriminative accuracy but was most effective for bipolar disorder, coronary heart disease and type II diabetes. We conclude that this small increase in discriminative accuracy is unlikely to be of diagnostic or predictive utility at the present time.

Original publication

DOI

10.1093/hmg/ddp295

Type

Journal

Human molecular genetics

Publication Date

09/2009

Volume

18

Pages

3525 - 3531

Addresses

Department of Social Medicine, MRC Centre for Causal Analyses in Translational Epidemiology, University of Bristol, Bristol, UK. dave.evans@bristol.ac.uk

Keywords

Humans, Risk Factors, Computational Biology, Polymorphism, Single Nucleotide, Genome, Human, Genome-Wide Association Study, Genetic Testing