Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We evaluated the statistical power, family wise error rate (FWER) and precision of several competing methods that perform mass-univariate vertex-wise analyses of grey-matter (thickness and surface area). In particular, we compared several generalised linear models (GLMs, current state of the art) to linear mixed models (LMMs) that have proven superior in genomics. We used phenotypes simulated from real vertex-wise data and a large sample size (\mathrm{N}=8,662) which may soon become the norm in neuroimaging. No method ensured a \text{FWER} < 5{\%} (at a vertex or cluster level) after applying Bonferroni correction for multiple testing. LMMs should be preferred to GLMs as they minimise the false positive rate and yield smaller clusters of associations. Associations on real phenotypes must be interpreted with caution, and replication may be warranted to conclude about an association.

Original publication

DOI

10.1109/ISBI45749.2020.9098719

Type

Conference paper

Publication Date

01/04/2020

Volume

2020-April

Pages

404 - 407